

VersaTest Classic
Product Introduction Guide

This document contains proprietary and confidential information belonging to Ascert, LLC (Ascert). This
information may not be used, duplicated, or disclosed without the prior written consent of Ascert. Do not
remove, deface or otherwise obscure this notice.

While Ascert makes every effort to ensure the accuracy of the information contained within this document,
no warranty, implied or otherwise, can be made as to its contents.

The information contained is subject to regular change and revision. Therefore, before using this
publication please check with Ascert, or its representative, that this edition is applicable and current.

Copyright © 2009 by Ascert, LLC. All rights reserved.

Trademarks:
 VersaTest and Relate are trademarks of Ascert, LLC.
 Guardian and NonStop are trademarks or registered trademarks of Hewlett-Packard Company.
 Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation.
 Java and JVM are trademarks or registered trademarks of Sun Microsystems, Inc.

For further information:
 Ascert, LLC
 759 Bridgeway
 Sausalito, CA 94965-2842

 Telephone: (415) 339-8500
 Email: info@ascert.com
 Web: http://www.ascert.com

VersaTest - Product Introduction Guide v5.0 (Product Introduction Guide.doc/2.14)

Table of Contents

CHAPTER ONE: INTRODUCTION 1

ABOUT THIS DOCUMENT 1
INTENDED AUDIENCE 1
COMPANY BACKGROUND 1
VERSATEST BACKGROUND 1
VERSATEST – THE TAGLINE 2

CHAPTER TWO: VERSATEST IN THE APPLICATION LIFE-CYCLE 3

INTRODUCTION 3
VERSATEST IN DEVELOPMENT AND UNIT TESTING 3
VERSATEST IN PERFORMANCE AND STRESS TESTING 4
VERSATEST IN SOFTWARE MAINTENANCE AND REGRESSION TESTING 5
VERSATEST FOR CERTIFICATION TESTING 5
VERSATEST AS A TECHNICAL SUPPORT AID 6

CHAPTER THREE: VERSATEST ENVIRONMENTS 7

INTRODUCTION 7
VERSATEST SIMULATORS 7

VersaTest Script Library 8
VersaTest Integrated Development Environment 8

STANDALONE TESTING & SIMULATION ENVIRONMENT 9
INTERACTIVE TESTING & SIMULATION ENVIRONMENT 10
DISTRIBUTED TEST ENVIRONMENT 11
PROXY TEST ENVIRONMENT – CROSS-PLATFORM TESTING 12
AUTOMATED TESTING & SIMULATION ENVIRONMENT 14
TURNKEY TESTING & SIMULATION ENVIRONMENT 16

CHAPTER FOUR: WHERE DO I GO FROM HERE? 17

INTRODUCTION 17

 i

Chapter One

INTRODUCTION

About this document
This document provides a high-level introduction to VersaTest Classic. It details the members of the
product family, and demonstrates their flexibility by showing some of the varied ways they can be used.

We use the term VersaTest throughout this document. However with the expansion of the product line
in 2008 with the release of the VersaTest Automator and VersaTest Simulator products, the more
correct term for the products discussed in this guide should be VersaTest Classic. VersaTest Automator
and VersaTest Simulator use VersaTest Automation Server (VersaTest/AS) to leverage the power of
VersaTest Classic to deliver a standardized, turnkey, integrated, end-to-end automated testing solution
for complex environments. Discussion of VersaTest Automator and VersaTest Simulator is not covered
any further in this guide.

Intended Audience
This is an introductory document, aimed towards a more non-technical audience. It is suitable for
people looking to get a “big-picture” of the product, such as new-users of the product, line managers or
other staff looking to evaluate the usefulness of the product in an organization.

Company Background
Ascert was founded in 1992 in San Francisco, California as SoftSell Business Systems, Inc. SoftSell
focused exclusively on providing specialized testing software and services to the Tandem NonStop
market. With our name change to Ascert in 2003, came a change in focus. Leveraging the success we
enjoyed in the Tandem market, we expanded our product line to offer a full suite of testing products for
all server platforms.

We build ‘best-in-class’ software used by many of the world's biggest and most well-known companies.
We build automated software testing solutions that help companies measure application performance,
reliability and scalability. Our off-the-shelf simulators include solutions for EFT testing, POS testing,
ATM testing, IFX testing, EMV / chip card testing, ISO8583 testing and 3270 / 6530 terminal testing.
Our custom simulators have been used to test a multitude of environments, including biometric systems
and air traffic control workstations.

Our products help testing professionals better manage their procedures and environments through an
end to end tool set. Additionally, our professional consulting services augment our customers’ testing
teams by helping to implement, teach and customize our software for their unique needs.

VersaTest Background
VersaTest was initially developed in Australia in the early 1990’s under the name VPRO, and was
designed solely for the testing of BASE24 applications. BASE24, which is an integrated electronic
funds processing and switching application from ACI Worldwide, ran at that time on Tandem NonStop

 1

 2

Computers, and is used extensively for the processing of ATM and POS (Point Of Sale) transactions.
Back at that time, Tandem Computers provided the “gold-standard” in server availability, and a suitable
testing tool was needed to make sure that the application reliability matched that of the underlying
server. VPRO was such a tool.

The computer industry has undergone many changes since then. While Tandem Computers is now part
of HP, where the machines are sold under the Integrity NonStop brand, the reliability of commodity
servers has increased to the point where they are routinely used for the processing of high-value
transactions, that at one time were the sole domain of Tandem Computers.

As the computer industry has evolved over time, so too has the VPRO product. Firstly it was
generalized to enable it to be used to test any Tandem-based application, rather than just BASE24; the
name of the product was changed to VPRO-G to symbolize this generalization. The next major
evolution came after the product was renamed to VersaTest, when VersaTest was generalized still
further to enable it to run on any Java-enabled platform, as exists on most commodity servers and
operating systems today. As evidenced by its historical roadmap, VersaTest’s evolution can be said to
track the evolution of the overall computer industry, allowing the same best-of-breed testing available
on the early proprietary systems to be applied to the wider market as it exists today.

VersaTest – The Tagline
VersaTest is a “message-based testing and simulation environment for mission-critical servers”. What
we mean by that is as follows:

• Message-based
VersaTest is typically used to simulate intelligent devices and applications to enable the testing
of other applications to which such entities are attached. These entities include: POS devices;
ATMs; biometric readers; host interfaces; credit card processor interfaces; and RADAR
displays. Essentially anything that exchanges formatted messages that can be described using
VersaTest’s Data Definition Language, across a communications link or middleware supported
by VersaTest, can be simulated by VersaTest. By way of contrast, most testing tools available
on the market today are geared to testing Web and GUI applications, which typically have an
accessible user interface that allows easy manual or “robot-driven” testing.

• Testing and Simulation Environment
VersaTest provides an environment that facilitates the testing of systems and applications by
simulating the entities with which these systems interface. To us, simulating and testing are
two different things, which though normally performed together, can actually be separated. In
fact we’ll show in this document a real-world example of how VersaTest has been used in an
embedded system to simulate a back-end host application during the pilot phase of a new
product rollout. Our environment provides an IDE to support the development of new
simulators where off-the-shelf simulators are not available. These simulators can be used to
perform all manners of testing activities from simple functional testing of single devices at low
transaction rates through to performance testing, where VersaTest can simulate many
thousands of devices at hundreds of thousands of transactions per second. These testing
activities can be carried out and controlled interactively in a standalone manner directly from
VersaTest’s own IDE, or embedded within 3rd part test managers, such as HP’s Mercury
TestDirector, which is part of HP Quality Center.

• Mission-critical Servers
Going back to our roots, when VersaTest, or VPRO as it was known back then, was initially
developed, it goes to the value our customers place on the systems with which we get involved.
These systems tend to be server systems core to the business of our customers, where even
minor outages represent significant dollars in lost revenue and other unwanted exposure. Who
wants to be front page news across the internet when their network is down and they are
unable to process customer payments? These customers want the best testing tools available,
and we believe that VersaTest falls into that category.

Chapter Two

VERSATEST IN THE APPLICATION LIFE-CYCLE

Introduction
VersaTest is a sophisticated message processing facility specifically designed to simulate and test
transactional interfaces and applications.

VersaTest gives the user the ability to rapidly examine and manipulate message traffic in virtually any
way, from the passive monitoring of messages flowing across an interface, to the active modification of
the messages while in-flight, and then to the complete simulation of one half of the interface. In the
latter case, for instance, the user can describe message formats within VersaTest, define how VersaTest
is to identify particular message types and delineate which actions are to be performed at specific times
or events.

VersaTest has the power and the features to support an application throughout its entire life cycle,
beginning with message and process prototyping, development, testing and simulation, and then
further, through the stress testing, capacity planning, quality assurance, and monitoring and support
stages. This type of tool gives an organization a standardized approach with which to support its
applications at all phases of the software development life cycle. Not only does this save considerable
time and money in cross-training between departments, it can also reduce the cost and complexity of
maintaining multiple tools and procedures.

The remainder of this chapter provides an overview of how VersaTest can be used in various stages of
an application’s life cycle.

VersaTest in Development and Unit Testing
VersaTest's versatility and quick set-up is highly valued in the development and testing environment
where the requirements of simulators and support programs change frequently.

For example, when developing software for a new interface, VersaTest can be used to simulate the
remote side of the interface. VersaTest is able to autonomously generate messages or send messages in
response to received messages – or even both at the same time! The user can interactively create
messages using VersaTest’s graphical message editor, so enabling ad-hoc / informal testing. These
messages can be saved, or recreated programmatically, and combined later in a script to create a more
robust / formal simulation and testing environment, to any desired level of complexity.

 3

VersaTest Message Editor

The flexibility and high-level nature of VersaTest’s scripting language also enables it to be used for
prototyping purposes. For example, a telecommunications carrier used VersaTest to perform protocol
conversion between X.25 and TCP/IP in order to demonstrate a new service. The script to achieve this
conversion was extremely simple and written in a matter of minutes.

VersaTest in Performance and Stress Testing
Using VersaTest for performance testing can reveal important information about an application and its
ability to cope under stress. It offers a variety of features which can help uncover performance
problems at the development stage, rather than at the production stage.

One such feature is VersaTest’s ability to allow users to write a precise test plan to accurately simulate
an entire day's activity including idle periods, linear and exponential ramping, and peak periods.
Another feature of VersaTest is that it allows users to interactively take control of a stress test. For
instance, if the user notices a problem occurring within the test application but needs to maintain the
current load factors in order to discover the cause, he is able to override the test plan and take control,
rather than having to repeat the test.

The performance that VersaTest is able to achieve is limited only by available hardware and
communications infrastructure. VersaTest can be deployed on multiple platforms in a number of
different topologies and tests can be scaled to any desired size.

Performance information gathered during a test is displayed graphically in real-time, and can be saved
for future analysis and retrospective ‘real-time’ replay.

 4

VersaTest Statistics Viewer

VersaTest in Software Maintenance and Regression Testing
Software maintenance and regression testing are recognized as important steps in an application's life
cycle. Typically this involves maintaining and replaying an exhaustive set of transactions created
specifically to thoroughly exercise an application.

The next step after such a replay is to verify that the application did, in fact, behave as it should have;
this includes comparing the resulting message flow with a previously captured message flow known to
be correct.

Until now, this message comparison phase had usually been performed manually, and as a manual
procedure, it was very costly, time-consuming and error-prone. With VersaTest, however, there is a
facility for automatically comparing these ‘before and after’ message flows, thus making the regression
test phase much shorter and more accurate than it had been in the past.

VersaTest contains many additional features which help to simplify this stage of an application's
development, all of which work together to provide a more manageable and reliable solution and to
save considerable time and resources.

VersaTest for Certification Testing
We live in a world that is getting progressively more interconnected, but in more and more diverse
ways. In order to manage the process of connecting to our partners we must often certify that our
systems meet a required set of specifications. The testing required to achieve this is in some ways
similar to that used for regression testing, but comparison of a previous test run is inappropriate because
of the non-deterministic nature of the testing. So instead of comparing one set of transactions against
another set, more formality and feedback is given to the process. Formality meaning that a successful
test run must be audited and retained for inspection. The feedback given during the testing process
should indicate more than that a transaction has failed, but why it has failed; this requires more
intelligence to be built into test scripts to enable more granular tests to be performed on individual fields
of the messages.

The VersaTest Automation Server (VTAS), which is an add-on to VersaTest, provides this capability
by separating out the simulation of a device from the test cases that use the simulation. This enables

 5

 6

structured testing of message flows that provide detailed feedback on whether or not the flow meets its
specifications.

VersaTest as a Technical Support Aid
VersaTest’s ability to manipulate messages in real-time also allows it to be used as an intelligent line
monitor, actively passing messages between destinations while optionally saving a copy to disk for later
examination or replay. For example, if a problem is noticed in a live application, the exact sequence of
messages can be captured in that live application and then replayed in the development environment,
thus enabling faster problem resolution.

VersaTest's ability to remain dormant and then become active at a particular time or event simplifies the
matter of capturing the sequence of events causing a problem.

VersaTest also offers many powerful message display and formatting options. One such feature is
VersaTest’s ability to identify messages 'in flight' and apply a DDL format (Data Definition Language).
The result is that technical support staff can instantly see the messages converted for display in a
readable form, labeled with field names and offsets. This saves valuable time, allowing them to
concentrate on the problem at hand.

Additionally, the user is also able to apply these formatting options later when examining a file of
captured messages using the built-in graphical message file editor.

Finally, it is possible to import into VersaTest, messages obtained from other sources. For example,
BASE24 audit files or files from a communications line trace can be imported into VersaTest either for
analysis and reporting, or in order to recreate a message stream to replay to a system under test.

 7

Chapter Three

VERSATEST ENVIRONMENTS

Introduction
VersaTest has evolved from a closed, point-solution for the testing of a single high-value application on
an extremely high-end proprietary computing platform, to a generalized, distributed testing and
simulation environment running on commodity platforms that is capable of being integrated into third
party enterprise test management products.

This evolution has resulted in a great deal of flexibility in the utilization of VersaTest. This chapter
describes the major components of VersaTest and shows various environments in which VersaTest
could be used, so as to help the reader understand the scope of solutions possible when deploying
VersaTest. These are meant to be illustrative, rather than definitive; there are many combinations
possible for installation of VersaTest beyond what are shown here.

VersaTest Simulators
The normal use of VersaTest is to perform some testing or simulation activities. In order to do this, a
VersaTest Simulator must first be created. The simulator contains the instructions required for
VersaTest’s runtime environment to process messages to and from the system under test – for example
“when I receive a balance enquiry, I return a balance response”. These instructions are written in an
optimized scripting language called VTALK, and then compiled for use by driver processes in
VersaTest’s runtime environment, thereby performing the simulation.

The VTALK scripting language is open and accessible to all licensed VersaTest users. It was developed
by Ascert to simplify the construction of simulators that contain otherwise complex technologies and

VCOMP
Script CompilerVTALK

Script
Compiled
Simulator

Driver
Processes

Runtime Environment

techniques. For example, VTALK contains language constructs that provide easy standardized access to
commonly-found technologies including the following:

• Message formats
XML; ASN.1; ISO8583

• Communication protocols
TCP/IP; X.25; MQ Series; XPNET; UDP; SNA; OSI/TS; TLAM; Bisync

• Security
DES; 3DES; RSA; DUKPT; EMV; LRC; MAC (X9.19 & ISO9797-1); MOD10/LUHN

Users with knowledge of other scripting or programming languages should have no difficulty learning
the VTALK language and creating and/or maintaining simulators using VersaTest’s Integrated
Development Environment (IDE).

Ascert also maintains a library of pre-built simulators which require little or no changes prior to
running.

VersaTest Script Library
Ascert maintains a library of simulators for commonly-found devices and interchanges. Subscribing to
this library provides customers more of a turnkey testing experience, to avoid having to maintain their
own simulators and learn the semantics of VTALK.

All the simulators in the library use a standardized operational approach, are delivered pre-compiled,
and separate out the device-specific simulation characteristics from the more generalized test-centric
functions. This allows the customer to create their own high-level test plans using a common data-
driven approach across all of their simulators. Ascert also provides its own automation layer, VersaTest
Automation Server (VTAS), to control these common simulators, enabling, for example, the test plans
to be created in HP’s Mercury TestDirector. This will be discussed in more detail, later in this chapter.

VersaTest Integrated Development Environment
VersaTest provides the ability for users to create their own simulators, or customize template simulator
scripts provided by Ascert and other third party suppliers. This ability makes customers self-reliant, and
avoids any vendor lock-in when maintaining their simulators.

VersaTest’s VWIN provides an IDE to support the development of new simulators. A description of the
IDE is beyond the scope of this document, but it includes modern features such as color-coded syntax
highlighting and a debugger that provides local and remote debugging.

 8

 9

Standalone Testing & Simulation Environment
Once a simulator module has been created or downloaded, then it can be deployed for use within a
VersaTest installation. The simplest form that an installation can take is as a single stand-alone, self-
contained simulator.

In this scenario, there is no operator control of the environment. The environment is started, perhaps
automatically when a computer is booted, and runs indefinitely from that point on. This could be
characterized as “set and forget” operation.

The only VersaTest components required in this scenario are the core infrastructure components, of
which the most important is VPRO, whose message processing capabilities perform the actual
simulation. Taken together these core infrastructure components provide VersaTest with its runtime
environment.

Compiled
Simulator

Driver
Processes

Runtime Environment

Systems
Under
Test

 10

This type of installation would normally be used when VersaTest is simulating some type of responder,
such as a payment authorization system. An institution may use such a stand-alone simulator as a
substitute for a real internal or external system, knowing that the simulator is always available and less
resource intensive. They may also provide such a stand-alone system to their partners to enable their
partners to test their own systems prior to being allowed to connect to a real application.

Because VersaTest can be run on any Java-enabled platform, it is also possible to use VersaTest in this
same way on embedded devices. This approach was taken by a European bank who wanted to pilot a
new service within their electronic deposit machines. However the bank did not want to incur the cost
of their software provider writing new code for the back-end host and the risk of promoting that code to
production. The solution devised by the bank and its ATM vendor was to run VersaTest on the
electronic deposit machine on the machine’s own OS. VersaTest then simulated the back-end host to
the deposit taking service, also running on the machine.

This pilot was so successful, that it was decided to use VersaTest for the full production roll-out, with
the solution now being used at several European banks.

Interactive Testing & Simulation Environment
Standalone environments discussed in the previous section run, by definition, completely unattended.
Often though, some level of operator control is needed over the environment. With VersaTest this is
achieved using either our graphical client interface (VWIN) or our command-line interface (VCOM).
These can either be run on the same system as the runtime environment, or from a remote system using
a TCP/IP connection.

N
et

w
or

k

VersaTest
Runtime

Environment

Deposit
taking

application

Customer

 11

Selecting EX functions from VWIN

The same VPRO can be simultaneously monitored and controlled by multiple operators – changes made
by one operator are visible to all operators.

The type of operator control exerted over the environment will vary considerably based on the purpose
of the script and the manner in which it was developed, since the script-writer is able to create functions
that are published to the user interface. Examples of what these ‘EX’ functions could do are as follows:

• Start a stress test that automatically generates transactions at a given rate.

• Alter the rate of transaction generation for
the previous stress test.

• Change the percentage of transactions to be
authorized in a responder script.

• Reset / display the running value of
transactions processed.

• Initiate the processing of a set of test cases
defined in an external spreadsheet; this is
known as data-driven testing, and is one
method of abstracting the simulation from
the test cases that drive the simulation.

• Take the data entered by the user in VWIN’s
graphical message editor, and use it to
populate a message to be sent to the system
under test.

Distributed Test Environment
The previous section showed how a simulator could be singly controlled. It is also possible for larger
tests to be created in arbitrarily complex manners.

The simplest way of doing this requires no changes to the script, and is achieved by simply replicating
the VPRO processes, perhaps onto completely separate platforms.

VWIN
/ VCOM

Computer 2

Computer 1

VersaTest
Runtime

Environment

VWIN
/ VCOM

VWIN can simultaneously control multiple VPROs, so any of the commands mentioned in the previous
section could be sent to any or all VPROs desired by the operator. In this manner, all of the VPRO
processes can be instructed to do the same thing, though they are all effectively operating
independently.

When tighter coupling is required between the simulator processes, then it is possible to create master-
slave relationships between the simulators, so enabling one VPRO to control multiple other VPROs.

Now the operator controls the master VPROs, which are then responsible for delegating actions to the
slave VPROs. This requires explicit scripting to achieve, but it does allow for the exchange of
information and coordination between the individual simulators.

VWIN
/ VCOM

VersaTest
Runtime

Environment

VersaTest
Runtime

Environment

VersaTest

VersaTest
Runtime

Environment

VWIN
/ VCOM

VersaTest
Runtime

Environment

VersaTest
Runtime

Environment

VersaTest
Runtime

Environment

Runtime
Environment

Proxy Test Environment – Cross-platform Testing
Separate VersaTest runtime environments exist for HP NonStop Servers, and Java-enabled platforms.
The runtime environment for Java-enabled platforms is the more sophisticated of the two, with a richer
scripting language, including support for XML, among other things, and an Integrated Development
Environment. Scripts developed for NonStop Servers will also run independently on the Java-enabled
platforms, as long as the Java-enabled platform supports the required communications protocol. If the
Java-enabled platform does not support these legacy protocols, or the Java-enabled platform does not

 12

have direct connectivity to the system under test (e.g. it’s behind a firewall), then the VersaTest Proxy
Line Handler (PLH) can be used.

Java-enabled Platform

E
xt

er
na

l S
ys

te
m

s
U

nd
er

 T
es

t

NSK Platform

VersaTest
Proxy Runtime
Environment

Internal
Processes
Under Test

Proxy
Line Handler

VersaTest
Runtime

Compiled
Script

Environment

The result is that the VersaTest scripts are run on the Java-enabled platforms, with full support for the
IDE and all other enhanced features, but the simulator script uses the legacy communications facilities
of the NonStop Server. Currently the PLH supports $RECEIVE, PATHSEND, XPNET, TCP/IP, X.25
and Websphere MQ, with other protocols being provided as demand necessitates.

The implementation of the PLH also improves the VersaTest user experience in other ways, because it
can automatically reconfigure the NonStop Server to match the communication / environmental
requirements of the script. For example, if the script is to use XPNET for its communications, then
VersaTest can automatically configure itself as a new satellite process within a BASE24 environment.

Ex
te

rn
al

 In
te

rfa
ce

U

nd
er

 T
es

t

VersaTest
Proxy Runtime
Environment

NSK Platform

V
T

P
ro

xy

Li
ne

 H
an

dl
er

BA
SE

24
N

uc
le

us

P
ro

ce
ss

U

nd
er

 T
es

t

Java-enabled Platform

VersaTest
Runtime

Environment

Compiled
Script

This enables direct communication to the BASE24 nucleus from test scripts running on completely
different platforms.

 13

Automated Testing & Simulation Environment
Isn’t VersaTest an automated testing and simulation tool? Can you ever have too much automation?!

The environments described thus far have shown VersaTest being used in either a stand-alone manner
or an interactive manner. In either case, VersaTest can automatically process messages and/or test data,
however the automation performed is specified within VersaTest’s script. It is also possible to
externally control the operation of VersaTest through a separate automation layer.

Ascert’s test control layer is called VersaTest Automation Server (VTAS). It provides many benefits
over the interactive control of VersaTest:

• Separates out the high-level test cases from the low-level device simulation, improving ease of
test case maintenance.

• Expands the scope of a test – test cases can span multiple devices. For example, a test could be
created that injects a message to the front-end of an application, and verifies that a matching
message is received across an interface on the back-end.

• Enables the test cases to be embedded in third party Test Managers, such as HP’s TestDirector,
which is part of the Quality Center Suite. This hides the VersaTest simulator within familiar
enterprise-wide testing products, thereby reducing the learning curve when including
VersaTest in a test environment.

• Enables multiple testing tools to be used as part of a single integrated test.

• Closes the gap between test specification and test execution

VTAS uses drivers from VersaTest’s driver library, which provide a standardized approach to test
automation. The VTAS environment is as follows:

VersaTest 5.0VersaTest 5.0

Test
DirectorQuality

Center

API
Test

Director
Test

DirectorQuality
Center

API

Quality
Center

API

Driver-A

DFS

Driver-B

DFS

Driver-C

DFS

Dr
ive

r
Li

br
ar

y

Driver-A

DFS

Driver-A

DFS

Driver-B

DFS

Driver-B

DFS

Driver-C

DFS

Driver-C

DFS

Dr
ive

r
Li

br
ar

y

Target
System

Test
Controller

CSV
HTML
XML

…

CSV
HTML
XML

…

External
Tool

Interfaces

External
Tool

Interfaces

Internal
Interfaces

(VT, CLI etc.)

VersaTest Automation Server

Dr
ive

r
AP

I

XMLXML

Test Plans

Test
Controller

CSV
HTML
XML

…

CSV
HTML
XML

…

External
Tool

Interfaces

External
Tool

Interfaces

Internal
Interfaces

(VT, CLI etc.)

VersaTest Automation Server

Dr
ive

r
AP

I

XMLXML

Test Plans

VTAS provides a simplified, high-level declarative language for specifying the contents of test cases.
These closely mirror the language and constructs used to formally specify the operation of an interface.
Take for example the following diagram showing how a payments processing system may authorize a
merchant request via a back-end host.

 14

 15

The steps in VTAS to test using two simulators would be something like the following:

1. Send message to payments processor

2. a) Expect message at back-end from payments processor
b) Validate message field values against values sent in Step 1

3. Build and send response to payments processor

4. a) Expect message from payments processor
b) Validate message field values against those sent in Step 3

The actual validation can be as complex as desired, and would normally tightly follow the message
processing specifications, enabling a high-level of feedback for messages that fail validation.

These test specifications can then be stored in spreadsheets, as happens in many testing departments, or
embedded in the above-mentioned third party test managers. Some example screenshots of HP’s
Mercury TestDirector being used with VTAS follow:

1

4

2

3

Payments
Processing System

Back-end
Authorizing Host

Merchant
POS Device

Turnkey Testing & Simulation Environment
A common problem with users new to automated testing tools is the setting of unrealistic expectations.
New users tend to envision that a testing tool can be brought in and immediately used in a new
environment, forgetting that almost all environments have some unique aspects. This hopeful approach
can be summarized as testing by ESP!! The reality is that automated testing is not simple.

There are, however, situations where a nearly turnkey solution can be provided. In these instances,,
common interfaces are to be simulated, which is what often happens with certification systems. In this
situation, VersaTest and VTAS can be delivered along with a test certification pack, containing all the
scripts required to certify the operation of devices attached to the simulator. Everything is delivered in a
single installation file.

VTAS

Driver Script

Test Case Library

VersaTest

 16

 Chap te r Four : Example Uses

Chapter Four

WHERE DO I GO FROM HERE?

Introduction
There is extensive documentation available for VersaTest. Where you go from here will depend on how
you intend to use VersaTest.

If you want to…

• …obtain the documentation for VersaTest

o The documentation is installed with every copy of VersaTest and is also available
from the Downloads area of our website at http://www.ascert.com/support. Note that
the Downloads area of our website is protected and some downloads require
registration – if you don’t see a downloadable file that you know exists, it probably
means you’re not logged on properly.

• …install a copy of VersaTest

o If not administered through your own corporate software then you can obtain a copy
of VersaTest through the Downloads area of our website at
http://www.ascert.com/support. Note that the Downloads area of our website is
protected and this download requires registration – if you don’t see a downloadable
file that you know exists, it probably means you’re not logged on properly.

There are multiple files that can be used for installation of VersaTest, which depend
on the platform on which it is to be installed. Each download also has the installation
instructions for the file attached, as well as the release notes for that version.

Note that a full VersaTest installation requires a license key provided by an Ascert
staff member.

• …learn how to operate VersaTest using already-existing simulators

o If you have access to an installed VersaTest environment, then your next step should
be to perform the tutorials installed with VersaTest. These are documented in the
manual entitled VersaTest Tutorials.

o Following that, for a more in-depth understanding of the operation of VersaTest, read
the manual entitled VersaTest User's Guide.

• …learn the features of an existing simulator

o All Ascert simulators come with documentation that describes their operation and any
simulator-specific features and functions available to the operator. Refer to that
documentation for more information.

• …learn how to build new simulators from scratch, or modify existing ones

o Read the manual entitled VersaTest Scripting Guide, which provides both a reference
to the VTALK scripting language and a Getting Started tutorial that includes our

 17

http://www.ascert.com/support
http://www.ascert.com/support

 Chap te r Four : Example Uses

 18

version of the ubiquitous “hello, world” example.
Note that when it comes time to test your new simulator, you will need familiarity
with the operation of VersaTest, as detailed above.

• …find a reference for all the start-up options for VersaTest programs and utilities

o Read the manual entitled VersaTest Command Line Reference. This documents all the
command-line settings for both the NonStop and Multi-Platform environments

• …learn more about how to use VersaTest from HP Quality Center

o This documentation is in progress – check our website for any updates.

• …find answers to a question we’ve not answered here

o The Support area of our website (http://www.ascert.com/support) contains a
knowledgebase that is frequently updated with new information. Note that the
information you see in the knowledgebase will differ depending on whether or not
you are a registered user of our website.

o If you can’t find the answer in our knowledgebase, feel free to post a message in our
Support forums or send an email to our Technical Support group.

http://www.ascert.com/support

	Table of Co
ntents
	Chapter One: Introduction

	About this document
	Intended Audience
	Company Background
	VersaTest Background
	VersaTest – The Tagline

	Chapter Two: VersaTest in the Application Life-cycle
	Introduction
	VersaTest in Development and Unit Testing
	VersaTest in Performance and Stress Testing
	VersaTest in Software Maintenance and Regression Testing
	VersaTest for Certification Testing
	VersaTest as a Technical Support Aid

	Chapter Three: VersaTest Environments

	Introduction
	VersaTest Simulators
	VersaTest Script Library
	VersaTest Integrated Development Environment

	Standalone Testing & Simulation Environment
	Interactive Testing & Simulation Environment
	Distributed Test Environment
	Proxy Test Environment – Cross-platform Testing
	Automated Testing & Simulation Environment
	Turnkey Testing & Simulation Environment

	Chapter Four: Where do I Go From Here
	Introduction

